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• large eddie simulations (LES) attempt to resolve at least parts of the 
turbulent cascade
-  principal problem: only large scale flow properties 

-  Reynolds number: Re = LV/ν  (Renature >> Remodel)

-  dynamic range much smaller than true physical one

•  need subgrid model 
- (in our case simple: only dissipation)

- more complex when processes (chemical reactions, nuclear 

- burning, etc) on subgrid scale determine large-scale dynamics

•  stochasticity ➞ unpredictable when 
and where “interesting things” happen
-  occurance of localized collapse

-  location and strength of shock fronts

-  etc.
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We model honey 
instead of the ISM!!!



(Mac Low, Klessen, Burkert, & Smith, 1998, PRL)
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turbulence decays rapidly:      Ekin decays as t-η, with 0.85 ≲ η ≲1.2. 

turbulence decays on 
timescales comparable 
to the free-fall time τff 

(e.g. Mac Low et al. 1998, 
 Stone et al. 1998,
 Padoan & Nordlund 1999)

steady state turbulence 
needs to be 
continuously driven!
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turbulent energy decays --> steady state turbulence needs to be driven --> 
insert energy at each timestep (or at least frequently)

two possibilities: 
-- include stochastic force term           

-- add      to the velocity

for supersonic turbulence, keeping constant velocity dispersion requires some 
thoughts (because of compressibility of the medium)
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turbulent energy decays --> steady state turbulence needs to be driven 
--> insert energy at each timestep (or at least frequently)

goal: keep rms velosicy dispersion constant 
--> adjust the amount of energy added

resulting in

because mi changes at each timestep,       needs to be adjusted.

write                     with fixed         and adjustable A. 

solve quadratic equation to get A:
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formation: the turbulent density PDF is used to explain the stellar
initial mass function (Padoan & Nordlund 2002; Hennebelle
& Chabrier 2008, 2009), the star formation rate (Krumholz
& McKee 2005; Krumholz et al. 2009; Padoan & Nordlund
2009), the star formation efficiency (Elmegreen 2008), and the
Kennicutt-Schmidt relation on galactic scales (Elmegreen 2002;
Kravtsov 2003; Tassis 2007). In Federrath et al. (2008b), we
found that supersonic turbulence driven by a purely compres-
sive (curl-free) force field yields a density PDF with roughly
three times larger standard deviation compared to solenoidal
(divergence-free) turbulence forcing, which strongly affects the
results obtained in these analytical models. Here, we want to
compare our results for the density PDF to observations of col-
umn density PDFs (e.g., Goodman et al. 2009).

Moreover, in Federrath et al. (2009) we investigated the frac-
tal density distribution of our two models with solenoidal and
compressive turbulence forcing, which showed that compressive
forcing yields a significantly lower fractal dimension (Df ≈ 2.3)
compared to solenoidal forcing (Df ≈ 2.6). In the present contri-
bution, we consider the scaling of centroid velocity increments
computed for these models, and we compare them to observa-
tions of the Polaris Flare by Hily-Blant et al. (2008). We ad-
ditionally used principal component analysis and compared our
results to observations of the G216-2.5 (Maddalena’s Cloud) and
the Rosette MC by Heyer et al. (2006).

Our results indicate that interstellar turbulence is driven by
mixtures of solenoidal and compressive forcing. The ratio be-
tween solenoidal and compressive modes of the turbulence forc-
ing may vary strongly across different regions of the ISM. This
provides an explanation for the apparent lack of correlation be-
tween turbulent density and velocity dispersions found in ob-
servations (e.g., Goodman et al. 2009; Pineda et al. 2008). We
conclude that solenoidal forcing is more likely to be realised
in quiescent regions with low star formation activity as in the
Polaris Flare and in Maddalena’s Cloud. On the other hand, in
regions of enhanced stellar feedback, compressive forcing leads
to larger standard deviations of the density PDFs, as seen in
one of the subregions of the Perseus MC surrounding a central
B star. Moreover, compressive forcing exhibits a higher scaling
exponent of principal component analysis than solenoidal forc-
ing. This higher scaling exponent is consistent with the mea-
sured scaling exponent for the interior of an ionising shell in the
Rosette MC.

In Sect. 2, we explain the numerical setup and turbulence
forcing used for the present study. We discuss our results ob-
tained using PDFs, centroid velocity increments, principal com-
ponent analysis, Fourier spectrum functions, and ∆-variance
analyses in Sects. 3−7, respectively. In each of these sections,
we compare the turbulence statistics obtained for solenoidal and
compressive forcing with observational data available in the lit-
erature. In Sect. 8, we discuss the possibility that transonic pre-
stellar cores typically form close to the sonic scale in a globally
supersonic, turbulent medium. Section 9 provides a list of the
limitations in our comparison of numerical simulations with ob-
servations. A summary of our results and conclusions is given
in Sect. 10.

2. Simulations and methods

The piecewise parabolic method (Colella & Woodward 1984),
implemented in the astrophysical code FLASH3 (Fryxell et al.
2000; Dubey et al. 2008) was used to integrate the equations
of hydrodynamics on three-dimensional (3D) periodic uniform

grids with 2563, 5123, and 10243 grid points. Since isothermal
gas is assumed throughout this study, it is convenient to define

s ≡ ln
ρ

〈ρ〉 (1)

as the natural logarithm of the density divided by the mean den-
sity 〈ρ〉 in the system. For isothermal gas, the pressure, P = ρc2

s ,
is proportional to the density ρ with the constant sound speed cs.
The equations of hydrodynamics solved here are consequently
given by

∂s
∂t
+ (u · ∇)s = −∇ · u (2)

∂u

∂t
+ (u · ∇)u = −c2

s ∇s + f , (3)

where u denotes the velocity of the gas. An energy equation
is not needed, because the gas is isothermal. The assumption
of isothermal gas is very crude, but may still provide an ad-
equate physical approximation to the real thermodynamics in
dense molecular gas (Wolfire et al. 1995; Pavlovski et al. 2006).
We discuss further limitations of our simulations in Sect. 9. The
stochastic forcing term f is used to drive turbulent motions.

2.1. Forcing module

Equations (2) and (3) have been solved before in the con-
text of molecular cloud dynamics, studying compressible tur-
bulence with either solenoidal (divergence-free) forcing or with
a 2:1 mixture of solenoidal to compressive modes in the tur-
bulence forcing (e.g., Padoan et al. 1997; Stone et al. 1998;
Mac Low et al. 1998; Mac Low 1999; Klessen et al. 2000;
Heitsch et al. 2001; Klessen 2001; Boldyrev et al. 2002;
Li et al. 2003; Padoan et al. 2004; Jappsen et al. 2005;
Ballesteros-Paredes et al. 2006; Kritsuk et al. 2007; Dib et al.
2008; Kissmann et al. 2008; Offner et al. 2008; Schmidt et al.
2009). The case of a 2:1 mixture of solenoidal to compres-
sive modes is the natural result obtained for 3D forcing, if no
Helmholtz decomposition (see below) is performed. Then, the
solenoidal modes occupy two of the three available spatial di-
mensions on average, while the compressive modes only oc-
cupy one (Elmegreen & Scalo 2004; Federrath et al. 2008b).
In the present study, the solenoidal forcing case is thus also
used as a control run for comparison with previous studies us-
ing solenoidal forcing. However, we additionally applied purely
compressive (curl-free) forcing and analysed the resulting tur-
bulence statistics in detail. Each simulation at a resolution of
10243 grid cells consumed roughly 100 000 CPU h. Therefore,
we concentrated on two extreme cases of turbulence forcing with
high resolution: (1) the widely adopted purely solenoidal forcing
(∇ · f = 0), and (2) purely compressive forcing (∇ × f = 0).
However, we also studied eleven simulations at numerical res-
olution of 2563 in which we smoothly varied the forcing from
purely solenoidal to purely compressive by producing eleven dif-
ferent forcing mixtures.

The forcing term f is often modelled with a spatially static
pattern, for which the amplitude is adjusted in time following the
methods introduced by Mac Low et al. (1998) and Stone et al.
(1998). This results in a roughly constant energy input on large
scales. Other studies model the random forcing term f such that
it can vary in time and space (e.g., Padoan et al. 2004; Kritsuk
et al. 2007; Federrath et al. 2008b; Schmidt et al. 2009). Here, we
used the Ornstein-Uhlenbeck (OU) process to model f , which
belongs to the latter type. The OU process is a well-defined
stochastic process with a finite autocorrelation timescale. It can
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The OU process is a stochastic differential equation describing the evolution 
of the forcing term in Fourier space (k-space):
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be used to excite turbulent motions in 3D, 2D, and 1D simula-
tions as explained in Eswaran & Pope (1988) and Schmidt et al.
(2006). Using an OU process enables us to control the autocor-
relation timescale T of the forcing. The concept of using the
OU process to excite turbulence and the projections in Fourier
space necessary to get solenoidal and compressive force fields
are described below.

The OU process is a stochastic differential equation de-
scribing the evolution of the forcing term f̂ in Fourier space
(k-space):

d f̂ (k, t) = f0 (k) P ζ (k) dW(t) − f̂ (k, t)
dt
T
· (4)

The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt), (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ(k) in
Fourier space. In index notation, the projection operator reads

Pζi j (k) = ζ P⊥i j (k) + (1 − ζ)P‖i j (k) = ζ δi j + (1 − 2ζ)
kik j

|k|2 , (6)

where δi j is the Kronecker symbol, and P⊥i j = δi j − kik j/k2 and

P‖i j = kik j/k2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
∣∣∣∣(1 − ζ)P‖i j

∣∣∣∣
2
= (1 − ζ)2, (7)

and by evaluating the norm of the full projection tensor
∣∣∣∣Pζi j

∣∣∣∣
2
= 1 − 2ζ + Dζ2. (8)

The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:

Flong

Ftot
=

(1 − ζ)2

1 − 2ζ + Dζ2 · (9)

Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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where δi j is the Kronecker symbol, and P⊥i j = δi j − kik j/k2 and

P‖i j = kik j/k2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
∣∣∣∣(1 − ζ)P‖i j

∣∣∣∣
2
= (1 − ζ)2, (7)

and by evaluating the norm of the full projection tensor
∣∣∣∣Pζi j

∣∣∣∣
2
= 1 − 2ζ + Dζ2. (8)

The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:

Flong

Ftot
=

(1 − ζ)2

1 − 2ζ + Dζ2 · (9)

Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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be used to excite turbulent motions in 3D, 2D, and 1D simula-
tions as explained in Eswaran & Pope (1988) and Schmidt et al.
(2006). Using an OU process enables us to control the autocor-
relation timescale T of the forcing. The concept of using the
OU process to excite turbulence and the projections in Fourier
space necessary to get solenoidal and compressive force fields
are described below.

The OU process is a stochastic differential equation de-
scribing the evolution of the forcing term f̂ in Fourier space
(k-space):

d f̂ (k, t) = f0 (k) P ζ (k) dW(t) − f̂ (k, t)
dt
T
· (4)

The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt), (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ(k) in
Fourier space. In index notation, the projection operator reads

Pζi j (k) = ζ P⊥i j (k) + (1 − ζ)P‖i j (k) = ζ δi j + (1 − 2ζ)
kik j

|k|2 , (6)

where δi j is the Kronecker symbol, and P⊥i j = δi j − kik j/k2 and

P‖i j = kik j/k2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
∣∣∣∣(1 − ζ)P‖i j
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= (1 − ζ)2, (7)

and by evaluating the norm of the full projection tensor
∣∣∣∣Pζi j

∣∣∣∣
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= 1 − 2ζ + Dζ2. (8)

The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:
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Ftot
=

(1 − ζ)2

1 − 2ζ + Dζ2 · (9)

Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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be used to excite turbulent motions in 3D, 2D, and 1D simula-
tions as explained in Eswaran & Pope (1988) and Schmidt et al.
(2006). Using an OU process enables us to control the autocor-
relation timescale T of the forcing. The concept of using the
OU process to excite turbulence and the projections in Fourier
space necessary to get solenoidal and compressive force fields
are described below.

The OU process is a stochastic differential equation de-
scribing the evolution of the forcing term f̂ in Fourier space
(k-space):

d f̂ (k, t) = f0 (k) P ζ (k) dW(t) − f̂ (k, t)
dt
T
· (4)

The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt), (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ(k) in
Fourier space. In index notation, the projection operator reads

Pζi j (k) = ζ P⊥i j (k) + (1 − ζ)P‖i j (k) = ζ δi j + (1 − 2ζ)
kik j

|k|2 , (6)

where δi j is the Kronecker symbol, and P⊥i j = δi j − kik j/k2 and

P‖i j = kik j/k2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
∣∣∣∣(1 − ζ)P‖i j
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2
= (1 − ζ)2, (7)

and by evaluating the norm of the full projection tensor
∣∣∣∣Pζi j

∣∣∣∣
2
= 1 − 2ζ + Dζ2. (8)

The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:
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Ftot
=

(1 − ζ)2

1 − 2ζ + Dζ2 · (9)

Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static

Page 3 of 28

C. Federrath et al.: Turbulence forcing in simulations and observations

be used to excite turbulent motions in 3D, 2D, and 1D simula-
tions as explained in Eswaran & Pope (1988) and Schmidt et al.
(2006). Using an OU process enables us to control the autocor-
relation timescale T of the forcing. The concept of using the
OU process to excite turbulence and the projections in Fourier
space necessary to get solenoidal and compressive force fields
are described below.

The OU process is a stochastic differential equation de-
scribing the evolution of the forcing term f̂ in Fourier space
(k-space):

d f̂ (k, t) = f0 (k) P ζ (k) dW(t) − f̂ (k, t)
dt
T
· (4)

The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt), (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ(k) in
Fourier space. In index notation, the projection operator reads

Pζi j (k) = ζ P⊥i j (k) + (1 − ζ)P‖i j (k) = ζ δi j + (1 − 2ζ)
kik j

|k|2 , (6)

where δi j is the Kronecker symbol, and P⊥i j = δi j − kik j/k2 and

P‖i j = kik j/k2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
∣∣∣∣(1 − ζ)P‖i j
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2
= (1 − ζ)2, (7)

and by evaluating the norm of the full projection tensor
∣∣∣∣Pζi j

∣∣∣∣
2
= 1 − 2ζ + Dζ2. (8)

The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:

Flong

Ftot
=

(1 − ζ)2

1 − 2ζ + Dζ2 · (9)

Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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be used to excite turbulent motions in 3D, 2D, and 1D simula-
tions as explained in Eswaran & Pope (1988) and Schmidt et al.
(2006). Using an OU process enables us to control the autocor-
relation timescale T of the forcing. The concept of using the
OU process to excite turbulence and the projections in Fourier
space necessary to get solenoidal and compressive force fields
are described below.

The OU process is a stochastic differential equation de-
scribing the evolution of the forcing term f̂ in Fourier space
(k-space):

d f̂ (k, t) = f0 (k) P ζ (k) dW(t) − f̂ (k, t)
dt
T
· (4)

The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt), (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ(k) in
Fourier space. In index notation, the projection operator reads

Pζi j (k) = ζ P⊥i j (k) + (1 − ζ)P‖i j (k) = ζ δi j + (1 − 2ζ)
kik j

|k|2 , (6)

where δi j is the Kronecker symbol, and P⊥i j = δi j − kik j/k2 and

P‖i j = kik j/k2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
∣∣∣∣(1 − ζ)P‖i j
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and by evaluating the norm of the full projection tensor
∣∣∣∣Pζi j
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= 1 − 2ζ + Dζ2. (8)

The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:
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Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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be used to excite turbulent motions in 3D, 2D, and 1D simula-
tions as explained in Eswaran & Pope (1988) and Schmidt et al.
(2006). Using an OU process enables us to control the autocor-
relation timescale T of the forcing. The concept of using the
OU process to excite turbulence and the projections in Fourier
space necessary to get solenoidal and compressive force fields
are described below.

The OU process is a stochastic differential equation de-
scribing the evolution of the forcing term f̂ in Fourier space
(k-space):

d f̂ (k, t) = f0 (k) P ζ (k) dW(t) − f̂ (k, t)
dt
T
· (4)

The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt), (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ(k) in
Fourier space. In index notation, the projection operator reads

Pζi j (k) = ζ P⊥i j (k) + (1 − ζ)P‖i j (k) = ζ δi j + (1 − 2ζ)
kik j

|k|2 , (6)

where δi j is the Kronecker symbol, and P⊥i j = δi j − kik j/k2 and

P‖i j = kik j/k2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
∣∣∣∣(1 − ζ)P‖i j

∣∣∣∣
2
= (1 − ζ)2, (7)

and by evaluating the norm of the full projection tensor
∣∣∣∣Pζi j

∣∣∣∣
2
= 1 − 2ζ + Dζ2. (8)

The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:

Flong

Ftot
=

(1 − ζ)2

1 − 2ζ + Dζ2 · (9)

Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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be used to excite turbulent motions in 3D, 2D, and 1D simula-
tions as explained in Eswaran & Pope (1988) and Schmidt et al.
(2006). Using an OU process enables us to control the autocor-
relation timescale T of the forcing. The concept of using the
OU process to excite turbulence and the projections in Fourier
space necessary to get solenoidal and compressive force fields
are described below.

The OU process is a stochastic differential equation de-
scribing the evolution of the forcing term f̂ in Fourier space
(k-space):

d f̂ (k, t) = f0 (k) P ζ (k) dW(t) − f̂ (k, t)
dt
T
· (4)

The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt), (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ(k) in
Fourier space. In index notation, the projection operator reads

Pζi j (k) = ζ P⊥i j (k) + (1 − ζ)P‖i j (k) = ζ δi j + (1 − 2ζ)
kik j

|k|2 , (6)

where δi j is the Kronecker symbol, and P⊥i j = δi j − kik j/k2 and

P‖i j = kik j/k2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
∣∣∣∣(1 − ζ)P‖i j

∣∣∣∣
2
= (1 − ζ)2, (7)

and by evaluating the norm of the full projection tensor
∣∣∣∣Pζi j

∣∣∣∣
2
= 1 − 2ζ + Dζ2. (8)

The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:

Flong

Ftot
=

(1 − ζ)2

1 − 2ζ + Dζ2 · (9)

Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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be used to excite turbulent motions in 3D, 2D, and 1D simula-
tions as explained in Eswaran & Pope (1988) and Schmidt et al.
(2006). Using an OU process enables us to control the autocor-
relation timescale T of the forcing. The concept of using the
OU process to excite turbulence and the projections in Fourier
space necessary to get solenoidal and compressive force fields
are described below.

The OU process is a stochastic differential equation de-
scribing the evolution of the forcing term f̂ in Fourier space
(k-space):

d f̂ (k, t) = f0 (k) P ζ (k) dW(t) − f̂ (k, t)
dt
T
· (4)

The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt), (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ(k) in
Fourier space. In index notation, the projection operator reads

Pζi j (k) = ζ P⊥i j (k) + (1 − ζ)P‖i j (k) = ζ δi j + (1 − 2ζ)
kik j

|k|2 , (6)

where δi j is the Kronecker symbol, and P⊥i j = δi j − kik j/k2 and

P‖i j = kik j/k2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
∣∣∣∣(1 − ζ)P‖i j
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2
= (1 − ζ)2, (7)

and by evaluating the norm of the full projection tensor
∣∣∣∣Pζi j

∣∣∣∣
2
= 1 − 2ζ + Dζ2. (8)

The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:

Flong

Ftot
=

(1 − ζ)2

1 − 2ζ + Dζ2 · (9)

Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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be used to excite turbulent motions in 3D, 2D, and 1D simula-
tions as explained in Eswaran & Pope (1988) and Schmidt et al.
(2006). Using an OU process enables us to control the autocor-
relation timescale T of the forcing. The concept of using the
OU process to excite turbulence and the projections in Fourier
space necessary to get solenoidal and compressive force fields
are described below.

The OU process is a stochastic differential equation de-
scribing the evolution of the forcing term f̂ in Fourier space
(k-space):

d f̂ (k, t) = f0 (k) P ζ (k) dW(t) − f̂ (k, t)
dt
T
· (4)

The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt), (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ(k) in
Fourier space. In index notation, the projection operator reads

Pζi j (k) = ζ P⊥i j (k) + (1 − ζ)P‖i j (k) = ζ δi j + (1 − 2ζ)
kik j

|k|2 , (6)

where δi j is the Kronecker symbol, and P⊥i j = δi j − kik j/k2 and

P‖i j = kik j/k2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
∣∣∣∣(1 − ζ)P‖i j
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2
= (1 − ζ)2, (7)

and by evaluating the norm of the full projection tensor
∣∣∣∣Pζi j

∣∣∣∣
2
= 1 − 2ζ + Dζ2. (8)

The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:

Flong

Ftot
=

(1 − ζ)2

1 − 2ζ + Dζ2 · (9)

Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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be used to excite turbulent motions in 3D, 2D, and 1D simula-
tions as explained in Eswaran & Pope (1988) and Schmidt et al.
(2006). Using an OU process enables us to control the autocor-
relation timescale T of the forcing. The concept of using the
OU process to excite turbulence and the projections in Fourier
space necessary to get solenoidal and compressive force fields
are described below.

The OU process is a stochastic differential equation de-
scribing the evolution of the forcing term f̂ in Fourier space
(k-space):

d f̂ (k, t) = f0 (k) P ζ (k) dW(t) − f̂ (k, t)
dt
T
· (4)

The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt), (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ(k) in
Fourier space. In index notation, the projection operator reads

Pζi j (k) = ζ P⊥i j (k) + (1 − ζ)P‖i j (k) = ζ δi j + (1 − 2ζ)
kik j

|k|2 , (6)

where δi j is the Kronecker symbol, and P⊥i j = δi j − kik j/k2 and

P‖i j = kik j/k2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
∣∣∣∣(1 − ζ)P‖i j

∣∣∣∣
2
= (1 − ζ)2, (7)

and by evaluating the norm of the full projection tensor
∣∣∣∣Pζi j

∣∣∣∣
2
= 1 − 2ζ + Dζ2. (8)

The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:

Flong

Ftot
=

(1 − ζ)2

1 − 2ζ + Dζ2 · (9)

Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
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the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads
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force field. The solid lines labelled with 1D, 2D, and 3D show the an-
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The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.
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the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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(2006). Using an OU process enables us to control the autocor-
relation timescale T of the forcing. The concept of using the
OU process to excite turbulence and the projections in Fourier
space necessary to get solenoidal and compressive force fields
are described below.
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The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt), (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ(k) in
Fourier space. In index notation, the projection operator reads
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where δi j is the Kronecker symbol, and P⊥i j = δi j − kik j/k2 and

P‖i j = kik j/k2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
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The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:

Flong

Ftot
=

(1 − ζ)2

1 − 2ζ + Dζ2 · (9)

Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
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total power of the forcing. The analytical ratio of compressive
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the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
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spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:

Flong

Ftot
=

(1 − ζ)2

1 − 2ζ + Dζ2 · (9)

Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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be used to excite turbulent motions in 3D, 2D, and 1D simula-
tions as explained in Eswaran & Pope (1988) and Schmidt et al.
(2006). Using an OU process enables us to control the autocor-
relation timescale T of the forcing. The concept of using the
OU process to excite turbulence and the projections in Fourier
space necessary to get solenoidal and compressive force fields
are described below.

The OU process is a stochastic differential equation de-
scribing the evolution of the forcing term f̂ in Fourier space
(k-space):

d f̂ (k, t) = f0 (k) P ζ (k) dW(t) − f̂ (k, t)
dt
T
· (4)

The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt), (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ(k) in
Fourier space. In index notation, the projection operator reads

Pζi j (k) = ζ P⊥i j (k) + (1 − ζ)P‖i j (k) = ζ δi j + (1 − 2ζ)
kik j

|k|2 , (6)

where δi j is the Kronecker symbol, and P⊥i j = δi j − kik j/k2 and

P‖i j = kik j/k2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
∣∣∣∣(1 − ζ)P‖i j
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2
= (1 − ζ)2, (7)

and by evaluating the norm of the full projection tensor
∣∣∣∣Pζi j
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= 1 − 2ζ + Dζ2. (8)

The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:
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Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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be used to excite turbulent motions in 3D, 2D, and 1D simula-
tions as explained in Eswaran & Pope (1988) and Schmidt et al.
(2006). Using an OU process enables us to control the autocor-
relation timescale T of the forcing. The concept of using the
OU process to excite turbulence and the projections in Fourier
space necessary to get solenoidal and compressive force fields
are described below.

The OU process is a stochastic differential equation de-
scribing the evolution of the forcing term f̂ in Fourier space
(k-space):

d f̂ (k, t) = f0 (k) P ζ (k) dW(t) − f̂ (k, t)
dt
T
· (4)

The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt), (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ(k) in
Fourier space. In index notation, the projection operator reads

Pζi j (k) = ζ P⊥i j (k) + (1 − ζ)P‖i j (k) = ζ δi j + (1 − 2ζ)
kik j

|k|2 , (6)

where δi j is the Kronecker symbol, and P⊥i j = δi j − kik j/k2 and

P‖i j = kik j/k2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
∣∣∣∣(1 − ζ)P‖i j
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= (1 − ζ)2, (7)

and by evaluating the norm of the full projection tensor
∣∣∣∣Pζi j

∣∣∣∣
2
= 1 − 2ζ + Dζ2. (8)

The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:

Flong

Ftot
=
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1 − 2ζ + Dζ2 · (9)

Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static

Page 3 of 28

C. Federrath et al.: Turbulence forcing in simulations and observations
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tions as explained in Eswaran & Pope (1988) and Schmidt et al.
(2006). Using an OU process enables us to control the autocor-
relation timescale T of the forcing. The concept of using the
OU process to excite turbulence and the projections in Fourier
space necessary to get solenoidal and compressive force fields
are described below.

The OU process is a stochastic differential equation de-
scribing the evolution of the forcing term f̂ in Fourier space
(k-space):

d f̂ (k, t) = f0 (k) P ζ (k) dW(t) − f̂ (k, t)
dt
T
· (4)

The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt), (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ(k) in
Fourier space. In index notation, the projection operator reads

Pζi j (k) = ζ P⊥i j (k) + (1 − ζ)P‖i j (k) = ζ δi j + (1 − 2ζ)
kik j

|k|2 , (6)

where δi j is the Kronecker symbol, and P⊥i j = δi j − kik j/k2 and

P‖i j = kik j/k2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
∣∣∣∣(1 − ζ)P‖i j
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2
= (1 − ζ)2, (7)

and by evaluating the norm of the full projection tensor
∣∣∣∣Pζi j

∣∣∣∣
2
= 1 − 2ζ + Dζ2. (8)

The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:
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Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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tions as explained in Eswaran & Pope (1988) and Schmidt et al.
(2006). Using an OU process enables us to control the autocor-
relation timescale T of the forcing. The concept of using the
OU process to excite turbulence and the projections in Fourier
space necessary to get solenoidal and compressive force fields
are described below.

The OU process is a stochastic differential equation de-
scribing the evolution of the forcing term f̂ in Fourier space
(k-space):

d f̂ (k, t) = f0 (k) P ζ (k) dW(t) − f̂ (k, t)
dt
T
· (4)

The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt), (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ(k) in
Fourier space. In index notation, the projection operator reads
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|k|2 , (6)

where δi j is the Kronecker symbol, and P⊥i j = δi j − kik j/k2 and

P‖i j = kik j/k2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
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The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:
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Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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be used to excite turbulent motions in 3D, 2D, and 1D simula-
tions as explained in Eswaran & Pope (1988) and Schmidt et al.
(2006). Using an OU process enables us to control the autocor-
relation timescale T of the forcing. The concept of using the
OU process to excite turbulence and the projections in Fourier
space necessary to get solenoidal and compressive force fields
are described below.

The OU process is a stochastic differential equation de-
scribing the evolution of the forcing term f̂ in Fourier space
(k-space):

d f̂ (k, t) = f0 (k) P ζ (k) dW(t) − f̂ (k, t)
dt
T
· (4)

The first term on the right hand side is a diffusion term. This term
is modelled using a Wiener process W(t), which adds a Gaussian
random increment to the vector field given in the previous time
step dt. Wiener processes are random processes, such that

W(t) −W(t − dt) = N(0, dt), (5)

where N(0, dt) denotes the 3D, 2D, or 1D version of a Gaussian
distribution with zero mean and standard deviation dt. This is
followed by a projection with the projection tensor P ζ(k) in
Fourier space. In index notation, the projection operator reads

Pζi j (k) = ζ P⊥i j (k) + (1 − ζ)P‖i j (k) = ζ δi j + (1 − 2ζ)
kik j

|k|2 , (6)

where δi j is the Kronecker symbol, and P⊥i j = δi j − kik j/k2 and

P‖i j = kik j/k2 are the fully solenoidal and the fully compressive
projection operators, respectively. The projection operator serves
to construct a purely solenoidal force field by setting ζ = 1. For
ζ = 0, a purely compressive force field is obtained. Any combi-
nation of solenoidal and compressive modes can be constructed
by choosing ζ ∈ [0, 1]. By changing the parameter ζ, we can
thus set the power of compressive modes with respect to the
total power of the forcing. The analytical ratio of compressive
power to total power can be derived from Eq. (6) by evaluating
the norm of the compressive component of the projection tensor,
∣∣∣∣(1 − ζ)P‖i j

∣∣∣∣
2
= (1 − ζ)2, (7)

and by evaluating the norm of the full projection tensor
∣∣∣∣Pζi j

∣∣∣∣
2
= 1 − 2ζ + Dζ2. (8)

The result of the last equation depends on the dimensionality
D = 1, 2, 3 of the forcing, because the norm of the Kronecker
symbol |δi j| = 1, 2 and 3 in one, two and three dimensions, re-
spectively. The ratio of Eqs. (7) and (8) gives the ratio of com-
pressive forcing power Flong to the total forcing power Ftot as a
function of the parameter ζ:

Flong

Ftot
=

(1 − ζ)2

1 − 2ζ + Dζ2 · (9)

Figure 1 provides a graphical representation of this ratio for
the 1D, 2D, and 3D case. For comparison, we plot numerical
values of the forcing ratio obtained in eleven 3D and 2D hydro-
dynamical runs with resolutions of 2563 and 10242 grid points,
in which we have varied the forcing parameter ζ from purely
compressive forcing (ζ = 0) to purely solenoidal forcing (ζ = 1)
in the range ζ = [0, 1], separated by ∆ζ = 0.1. Note that a natural
mixture of forcing modes is obtained for ζ = 0.5, which leads

Fig. 1. Ratio of compressive power to the total power in the turbulence
force field. The solid lines labelled with 1D, 2D, and 3D show the an-
alytical expectation for this ratio, Eq. (9), as a function of the forcing
parameter ζ for one-, two- and three-dimensional forcing, respectively.
The diamonds and squares show results of numerical simulations in 3D
and 2D with ζ = [0, 1], separated by ∆ζ = 0.1. Those models were run
at a numerical resolution of 2563 and 10242 grid points in 3D and 2D,
respectively. The two extreme forcing cases of purely solenoidal forc-
ing (ζ = 1) and purely compressive forcing (ζ = 0) are indicated as
“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.

to Flong/Ftot = 1/3 for 3D turbulence, and Flong/Ftot = 1/2 for
2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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The OU process is a stochastic differential equation describing the evolution 
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“sol” and “comp”, respectively. Note that in any 1D model, all power
is in the compressive component, and thus Flong/Ftot = 1, independent
of ζ.
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2D turbulence. A simple way to understand this natural ratio is
to consider longitudinal and transverse waves. In 3D, the longi-
tudinal waves occupy one of the three spatial dimensions, while
the transverse waves occupy two of the three on average. Thus,
the longitudinal (compressive) part has a power of 1/3, while the
transverse (solenoidal) part has a power of 2/3 in 3D. In 2D, the
natural ratio is 1/2, because longitudinal and transverse waves
are evenly distributed in two dimensions.

The second term on the right hand side of Eq. (4) is a drift
term, which models the exponentially decaying correlation of
the force field with itself. Thus, the autocorrelation timescale of
the forcing is denoted by T . We set the autocorrelation timescale
equal to the dynamical timescale T = L/(2V) on the scale of
energy injection, where L is the size of the computational do-
main, V = csM and M ≈ 5.5 is the rms Mach number in all
runs. The autocorrelation timescale is therefore equal to the de-
cay time constant in supersonic hydrodynamic and magnetohy-
drodynamic turbulence driven on large scales (Stone et al. 1998;
Mac Low 1999). The forcing amplitude f0(k) is a paraboloid in
3D Fourier space, only containing power on the largest scales
in a small interval of wavenumbers 1 < |k| < 3 peaking at
k = 2, which corresponds to half of the box size L/2. The ef-
fects of varying the scale of energy input were investigated by
Mac Low (1999), Klessen et al. (2000), Heitsch et al. (2001)
and Vázquez-Semadeni et al. (2003). Here, we consider large-
scale stochastic forcing, which is closer to the observational data
(e.g., Ossenkopf & Mac Low 2002; Brunt et al. 2009). This type
of forcing models the kinetic energy input from large-scale tur-
bulent fluctuations, breaking up into smaller structures. Kinetic
energy cascades down to smaller and smaller scales, and thereby
effectively drives turbulent fluctuations on scales smaller than
the turbulence injection scale.

We have verified that our results are not sensitive to the gen-
eral approach of using an Ornstein-Uhlenbeck process for the
turbulence forcing. For instance, we have used an almost static
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second term is drift term, and models the exponentially decaying timescale 
of the force field with itself --> autocorrelation timescale T of the forcing 
field
often T = L/(2V) with L being the size of the computational domain and V 
being the typical crossing time V = cs M (with Mach number M 
sound speed cs)

forcing amplitude f0(k) is a paraboloid in 3D Fourier space, 
only containing power on the largest scales in a small interval 
of wavenumbers kmin < |k| < kmax



Supernova explosions as drivers of ISM turbulence 
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movies from Frederick Gent (University of Sheffield)
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what drives ISM turbulence?

• seems to be driven on large scales, little difference 
between star-forming and non-SF clouds
→ rules out internal sources 

• proposals in the literature

- supernovae

- expanding HII regions / stellar winds / outflows

- spiral density waves

- magneto-rotational instability

- more recent idea: accretion onto disk



what drives ISM turbulence?

some energetic arguments...

energy decay by turbulent dissipation:

decay timescale:

 (from Mac Low & Klessen, 2004)

 (Mac Low et al. 1999)



what drives ISM turbulence?

magneto-rotational instability:

gravitational instability (spiral waves)

 (from Mac Low & Klessen, 2004)

 (from Piotek & Ostriker 2005)
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 (from Walter et al. 2008)



what drives ISM turbulence?

protostellar outflows expanding HII regions

 (from Mac Low & Klessen, 2004)

 (Li & Nakamura 2006, Wang et al. 2010 vs. 
  Banerjee et al. 2008)

 (note: different numbers by Matzner 2002)



what drives ISM turbulence?

supernovae

 (from Mac Low & Klessen, 2004)

(distribution of temperature in SN driven disk turbulence, by
de Avillez & Breitschwerdt 2004)

in star-forming parts of the disk,
clearly SN provide enough energy
to compensate for the decay of 
ISM turbulence.
BUT: what is outside the disk?



accretion driven turbulence

•  yet another thought:

• astrophysical objects form by accretion of ambient material

• the kinetic energy associated with this process is a key 
agent driving internal turbulence.

• this works on ALL scales:
• galaxies
• molecular clouds
• protostellar accretion disks

Klessen & Hennebelle (2010, A&A)



concept
• turbulence decays on a crossing time

τd ≈
Ld

σ
,

• energy decay rate Ėdecay ≈
E

τd
= −

1

2

Mσ3

Ld

• kinetic energy of infalling material

Ėin =
1

2
Ṁinv

2
in

• can both values match, modulo some efficiency?
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Ėdecay

Ėin
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(Field et al.. 2008, MNRAS, 385, 181, Mac Low & Klessen 2004, RMP, 76, 125)



Klessen & Hennebelle (2010)

some estimates from convergent flow studies



application to galaxies

• underlying assumption
• galaxy is in steady state

---> accretion rate equals star formation rate
• what is the required efficiency for the 

method to work?

• study Milky Way and 11 THINGS 
• excellent observational data in HI:

velocity dispersion, column density, rotation curve



11 THINGS galaxies



molecular cloud scales

• molecular clouds grow in mass

• this is inferred by looking at 
molecular clouds in different 
evolutionary phases in the 
LMC (Fukui et al. 2008, 2009)

No. 1, 2009 MOLECULAR AND ATOMIC GAS IN THE LMC. II. 147

Figure 4. Histograms of the pixel-averaged H i brightness temperature where significant CO emission is detected for Type I (blue), Type II (yellow), and Type III (red)
GMCs. Histograms are shown for the whole LMC, and for three different regions—Bar, North, and Arc—which are indicated in the right panel.
(A color version of this figure is available in the online journal.)

envelopes each GMC. The associated H i is often elongated
along the GMCs and the region of intense H i emission is usu-
ally <100 pc wide. The CO emission typically extends over a
velocity range of ∼5 km s−1; beyond a few times this veloc-
ity range, the associated H i emission generally becomes much
weaker or disappears.

3.2. Physical Properties of the H i Envelope

In general, it is a complicated task to derive reliable physical
properties of the H i gas associated with a GMC because the
H i profiles are a blend of several different components along
the line of sight, making it difficult to select the H i gas that is
physically connected to a GMC. Another obstacle is that the H i
emission is spatially more extended than the CO emission and
has a less clear boundary than the CO.

For our analysis, we first selected GMCs with simple single-
peaked H i profiles from the Fukui et al. (2008) catalog. The
resulting sample consists of 123 GMCs in total. Their catalog
numbers and basic physical properties, taken from Fukui et al.
(2008), are listed in Table 2. For these GMCs, we tested
whether there was a bias in their location with respect to
the kinematic center of the galaxy, in their CO line width or
in their molecular mass. The histograms in Figure 6 indicate
that there is no particular trend for these properties of the
selected GMCs compared to GMCs in the complete catalog,
suggesting that there is no appreciable selection bias. We
applied a Kolmogorov–Smirnov test to the three histograms
and calculated maximum deviations of 0.031, 0.061, and 0.117,
respectively, for the three parameters. These values are less than
the critical deviation, 0.129, for a conventional significance level
of 0.05, confirming that there is no selection bias.

Next, we made Gaussian fits to the H i and CO profiles
toward the CO peak of each GMC. This procedure yields a

peak intensity, peak velocity, and half-power line width for each
line profile (a summary is given for each GMC type in Table 1).
Figure 7 shows the relation between the CO line width and the
difference between the CO and H i peak velocities. We find the
H i and CO peak velocities to be in good agreement, showing
only a small scatter of less than a few km s−1. Figure 8 shows
two histograms of the H i and CO line widths. We see that the
H i line width is typically 14 km s−1, roughly three times larger
than that of CO. Figure 9 shows a correlation between H i and
CO line widths. The two quantities show a positive correlation
with a correlation coefficient of 0.39. The correlation coefficient
is determined using the Spearman rank method throughout this
paper. The kinematic properties of H i and CO, as illustrated in
Figures 7 and 9, lend further support to a physical association
between the H i and CO.

In order to estimate the size of the H i envelope surrounding
each GMC, we construct an H i integrated intensity map of
each GMC. First, we find the local peak in the H i intensity cube
surrounding the CO emission, and then integrate the H i intensity
over the velocity channels corresponding to the FWHM of the
H i line profile at this peak position. Next we estimate the area,
S, where the H i integrated intensity is greater than 80% of the
value at the local H i peak. We then calculate the radius of the
H i envelope, R(H i), from its projected area, S = πR(H i)2.
The H i integrated intensity is calculated for all the pixels
with detectable CO emission; the spatial distribution of the
H i emission generally shows a peak and a reasonably defined
boundary. The 80% level was chosen after a few trials using
different levels; it is the maximum value for which a reasonable
H i size is obtained for 116 of the 123 envelopes. While 80%
seems to be rather high for such a definition of a cloud envelope,
the H i size can be unrealistically large compared to the CO
cloud size along a filamentary H i distribution if we use a lower

Fukui et al. (2009)



molecular cloud scales

Fig. 12.— Histograms of the mass of class I (Top), class II (Mid-
dle), and class III (Bottom), respectively. Mass is derived by using
XCO= 5.4 ×1020 cm−2(K km s−1)−1 (Table 2).

tinuum results are summarized in a catalog of 483 sources,
and the spectral information makes it possible to select H II
regions and eliminate background sources not related the
LMC. By comparing these data with the GMCs, we found
that all of the starless GMCs have no embedded H II re-
gions that are detectable at radio wavelengths (Kawamura
et al., 2006).
Table 4 summarizes the results of the present comparison

between GMCs and young objects, SWB0 clusters and the
H II regions including radio sources. It shows that ∼ 25%
of the GMCs are starless in the sense that they are not as-
sociated with H II regions or young clusters. Fig. 12 shows
mass histograms of the three classes, I, II and III. These in-
dicate that the mass range of the three is from 104.5M! to a
few times 106M!. It is also noteworthy that class I GMCs
tend to be less massive than the other two in the sense that
the number of GMCs more massive than 105M! is about
half of those of class II and class III GMCs, respectively.

Fig. 13.— Evolutionary sequence of the GMCs in the LMC.
An example of the GMCs and illustration at each class are shown
in the left panels and the middle column, respectively. The im-
ages and contours in the left panels are Hα (Kim et al., 1999) and
CO integrated intensity by NANTEN (Fukui et al., 2001; Fukui
et al., in preparation); contour levels are from K km s−1with 1.2
K km s−1intervals. Crosses and filled circles indicate the position
of the H II regions and young clusters, SWB 0 (Bica et al., 1996),
respectively. The number of the objects and the time scale at each
class are also presented on the right.

6.3. The Evolution of GMCs in the LMC

The completeness of the present GMC sample cover-
ing the whole LMC enables us to infer the evolutionary
timescales of the GMCs. We assume a steady state evolu-
tion and therefore time spent in each phase is proportional
to the number of objects in Table 4. Fig. 13 is a scheme
representing the evolution suggested from Table 4. The ab-
solute time scale is based on the age of stellar clusters: the
age of SWB 0 clusters is taken to be 10 Myr. The first stage
corresponds to starless GMCs, having a long time scale of
7 Myr. This is followed by a phase with small H II regions,
implying the formation of a few to several O stars. The sub-
sequent phase indicates the most active formation of rich
clusters including many early O stars (one of such an ex-
ample is N 159N). In the final phase, the GMC has been
more or less dissipated under the strong ionization and stel-
lar winds from O stars. The lifetime of a typical GMC in
the LMC is then estimated as the total of the timescales in
Table 4: ∼ 27 Myr, assuming that the GMC is completely
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representing the evolution suggested from Table 4. The ab-
solute time scale is based on the age of stellar clusters: the
age of SWB 0 clusters is taken to be 10 Myr. The first stage
corresponds to starless GMCs, having a long time scale of
7 Myr. This is followed by a phase with small H II regions,
implying the formation of a few to several O stars. The sub-
sequent phase indicates the most active formation of rich
clusters including many early O stars (one of such an ex-
ample is N 159N). In the final phase, the GMC has been
more or less dissipated under the strong ionization and stel-
lar winds from O stars. The lifetime of a typical GMC in
the LMC is then estimated as the total of the timescales in
Table 4: ∼ 27 Myr, assuming that the GMC is completely
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Blitz et al. (2007, PPV)



some further thoughts

•method works for Milky Way type galaxies:
- required efficiencies are ~1% only!

• relevant for outer disks (extended HI disks)
- there are not other sources of turbulence (certainly 

not stellar sources, maybe MRI)

• works well for molecular clouds 
- example clouds in the LMC (Fukui et al.)

• potentially interesting for TTS
-model reproduces dM/dt - M relation (e.g Natta et al. 2006, 

Muzerolle et al. 2005, Muhanty et al. 2005, Calvet et al. 2004, etc.) 



end

Hokusai: In the wake of the great wave of Tanakawa


